ارزیابی مخاطرات ناشی از اتلاف پوشش گیاهی در حوضه شرقی دریاچه ارومیه مبتنی بر رویکرد مدل‌سازی خدمات اکوسیستمی تحت چارچوب مفهومی DPSIR

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه پژوهشی ارزیابی و مخاطرات محیط زیستی، پژوهشکده محیط‌زیست و توسعه پایدار، سازمان حفاظت محیط‌زیست، تهران، ایران

2 استادیار، گروه پژوهشی اقتصاد محیط‌زیست، پژوهشکده محیط‌زیست و توسعه پایدار، سازمان حفاظت محیط‌زیست، تهران، ایران

3 استادیار، گروه مطالعات محیطی، پژوهشکده تحقیق و توسعه علوم انسانی (سمت)، تهران، ایران

10.22034/eiap.2023.179862

چکیده

انجام ارزیابی‌های اکوسیستمی با شدت گرفتن مخاطرات ناشی از محرکه‌های طبیعی و انسانی تغییر و افزایش فشار وارده بر اکوسیستم‌های طبیعی به ویژه در کشور‌های در حال توسعه‌‌ای مانند ایران، از اهمیت فزاینده‌‌ای برخوردار شده است .این موضوع مهم برای حوضه‌آبخیز دریاچه ارومیه با توجه به نقش حیاتی آن در تدارک خدمات اکوسیستمی گوناگون که گروه‌های مختلفی از ذینفعان از آن منتفع می‌شوند نیز صدق می‌کند. در این تحقیق، ترکیبی از دو روش ارزیابی کمی مبتنی بر مدل‌سازی اکوسیستمی با استفاده از سامانه پشتیبان سیاست‌گذاری جهانی آب (WWPSS) (1) و ارزیابی توصیفی با استفاده از چارچوب مفهومی (DPSIR) (2)، برای مرتبط ساختن نتایج حاصل از بررسی تغییرات کاربری زمین، تغییرات اقلیمی و اثرات آنها بر پارامتر‌های اکوهیدرولوژیکی (پوشش گیاهی، بودجه آبی، رواناب و فرسایش خاک) با هدف پهنه‌بندی فضایی مخاطرات و کاربرد آن در مدیریت اصولی و آگاهانه ‌محیط‌‌زیست در حوضه‌آبخیز دریاچه ارومیه مورد استفاده قرار گرفت. اتلاف پوشش گیاهی در اثر تغییرات اقلیمی موجب تغییر میانگین فرسایش خالص خاک در حوضه از 012/0- به 20/0 میلی‌متر درسال در متر مربع شده است که به عبارت دیگر میانگین فرسایش خاک در پهنه آبخیز را تنها در بازه زمانی مورد بررسی بیش از 3 تن در هکتار افزایش داده و در صورت تداوم چنین روندی، فرسایش خاک تشدید خواهد شد. با کاربرد بیشتر مدل‌های کمی‌سازی کارکرد‌های اکوهیدرولوژیکی در آینده می‌توان ظرفیت‌های روش مورد استفاده در این تحقیق را ارتقاء بخشید و به راه حل‌های نوآورانه تری برای پرداختن به چالش‌های اکولوژیکی در مدیریت آبخیز‌ها دست یافت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assessment of the Hazards of Vegetation Loss in the Eastern Basin of the Lake Urmia Based on the Ecosystem Services Modeling Approach Under the Conceptual Framework of DPSIR

نویسندگان [English]

  • Ardavan Zarandian 1
  • roya mousazadeh 2
  • Majid Ramezani Mehrian 3
1 Assistant Professor, Research Group of Environmental Assessment and Risk, Research Center for Environment and Sustainable Development (RCESD), Department of Environment, Tehran, I.R. Iran.
2 Assistant Professor, Research Group of Environmental Economics, Research Center for Environment and Sustainable Development (RCESD) , Department of Environment, Tehran, I.R. Iran.
3 1. Assistant Professor, Department of Environmental Studies, the Institute for Research and Development in the Humanities (SAMT), Tehran, I.R. Iran
چکیده [English]

Ecosystem assessments have become increasingly important as the hazards posed by natural and human drivers, and the pressure on natural ecosystems increases, especially in developing countries as Iran. This is particularly true for the Lake Urmia watershed due to its vital role in in the provision of various ecosystem services that that different groups of stakeholders benefit from. In this research, a combination of two quantitative assessment methods based on ecosystem modeling using the Water World Policy Support System (WWPSS) and a descriptive assessment using the Driver-Pressure-State-Impact-Response (DPSIR) conceptual framework was applied to link the results of evaluating land-use change, climate change and their effects on echo-hydrological parameters (vegetation, water budget, runoff, and soil erosion) with the aim of spatial zoning of hazards and its application in principled and conscious environmental management in the watershed of Lake Urmia .Vegetation loss caused by climate change has resulted in a change in the average net soil erosion in the watershed from -0.012 to 0.20 mm per year per square meter. In other words, the average soil erosion in the watershed only during the period under review rose dramatically by more than 3 tons per hectare. If this trend continues, soil erosion will become more severe.The capacities of the proposed method used in this research can be developed and more innovative solutions can be investigated to face ecological challenges in watershed management by further application of quantification models of eco-hydrological functions in the future. 
 

کلیدواژه‌ها [English]

  • Assessment of the hazards
  • Vegetation Loss
  • Ecosystem Services Modeling
  • Conceptual framework of DPSIR
  • Eastern watershed of the Lake Urmia
Ahmadaali, J.; Barani, G.A.; Qaderi, K. & Hessari, B. 2018. Analysis of the effects of water management strategies and climate change on the environmental and agricultural sustainability of Lake urmia Basin, Iran. Water.10:160. (In Persian)
Alizadeh‐Choobari, O., Ahmadi‐Givi, F.; Mirzaei, N. & Owlad, E. 2016. Climate change and anthropogenic impacts on the rapid shrinkage of Lake Urmia. International Journal of Climatology. 36(13): 4276-4286. (In Persian)
Alkhayer, M.; Eghbal, M. K. & Hamzehpour, N. 2019. Geomorphic surfaces of eastern lake Urmia Playa and their influence on dust storms. Journal of Applied Sciences and Environmental Management, 23(8): 1511-1520. (In Persian)
Anzaldua, G.; Gerner, N.V.; Lago, M.; Abhold, K.; Hinzmann, M.; Beyer, S.; Winking, C.; Riegels, N.; Jensen, J.K.; Termes, M. & Amorós, J. 2018. Getting into the water with the Ecosystem Services Approach: The DESSIN ESS evaluation framework. Ecosystem Services. 30:318-326.
Baatz, M., Benz, U., Dehghane, S., Heymen, M., Holtje, A., Hofman, P., Lingenfelder, I., Mimler, M., Sohlbach, M., & Weber, M. 2005. User Guide: eCognition Professional 4.0. Definiens Imaging, Munich, Germany.
Balkanlou, K. R.; Müller, B.; Cord, A. F.; Panahi, F.; Malekian, A.; Jafari, M. & Egli, L. 2020. Spatiotemporal dynamics of ecosystem services provision in a degraded ecosystem: a systematic assessment in the Lake Urmia basin, Iran. Science of the Total Environment, 716: 137100.
Benz, U. C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I. & Heynen, M. 2004. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of photogrammetry and remote sensing. 58(3-4): 239-258.
Birch, J.C.; Thapa, I.; Balmford, A.; Bradbury, R.B.; Brown, C.; Butchart, S.H.; Gurung, H.; Hughes, F.M.; Mulligan, M.; Pandeya, B. & Peh, K.S.H. 2014. What benefits do community forests provide, and to whom? A rapid assessment of ecosystem services from a Himalayan forest, Nepal. Ecosystem Services. 8:118-127.
Blaschke, T. 2010. Object based image analysis for remote sensing. ISPRS journal of photogrammetry and remote sensing. 65(1):2-16.
Bruijnzeel, L.A.; Mulligan, M. & Scatena, F. N. 2011. Hydrometeorology of tropical montane cloud forests: emerging patterns. Hydrological Processes. 25(3): 465-498.
Carroll, M.; Townshend, J.; Hansen, M.; DiMiceli, C.; Sohlberg, R. & Wurster, K. 2010. MODIS vegetative cover conversion and vegetation continuous fields. In Land Remote Sensing and Global Environmental Change. Springer, New York, NY. (pp. 725-745)
Christie, M.; Fazey, I.; Cooper, R.; Hyde, T. & Kenter, J. O. 2012. An evaluation of monetary and non-monetary techniques for assessing the importance of biodiversity and ecosystem services to people in countries with developing economies. Ecological economics. 83: 67-78.
Cleve, C.; Kelly, M.; Kearns, F. R. & Moritz, M. 2008. Classification of the wildland–urban interface: A comparison of pixel-and object-based classifications using high-resolution aerial
Costanza, R.; De Groot, R.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.& Grasso, M. 2017. Twenty years of ecosystem services: how far have we come and how far do we still need to go?. Ecosystem services. 28:1-16.
De Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L. & Willemen, L. 2010. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecological complexity. 7(3): 260-272.
Delju, A.H.; Ceylan, A.; Piguet, E. & Rebetez, M. 2013. Observed climate variability and change in Lake urmia Basin, Iran. Theoretical and applied climatology, 111(1): 285-296.
Dirnböck, T.; Dullinger, S. & Grabherr, G. 2003 A regional impact assessment of climate and land‐use change on alpine vegetation. Journal of Biogeography, 30(3): 401-417.
Dong, T.; Xu, W.; Zheng, H.; Xiao, Y.; Kong, L. & Ouyang, Z. 2018. A framework for regional ecological risk warning based on ecosystem service approach: A case study in Ganzi, China. Sustainability, 10(8): 2699.
Dramstad, W.E.; Olson, J.D. & Forman, R.T. 1996. Landscape ecology principles in landscape architecture and land-use planning (No. Sirsi) i9781559635141).
Faber, J. H.; Marshall, S.; Van den Brink, P. J. & Maltby, L. 2019. Priorities and opportunities in the application of the ecosystem services concept in risk assessment for chemicals in the environment. Science of the Total Environmen. 651: 1067-1077.
Farajzadeh, J.; Fard, A.F. & Lotfi, S. 2014. Modeling of monthly rainfall and runoff of Lake urmia basin using “feed-forward neural network” and “time series analysis” model. Water Resources and Industry, 7: 38-48. (In Persian)
Fathian, F.; Dehghan, Z.; Bazrkar, M.H. & Eslamian, S. 2016a. Trends in hydrological and climatic variables affected by four variations of the Mann-Kendall approach in Lake urmia basin, Iran. Hydrological Sciences Journal. 61(5): 892-904. (In Persian)
Fathian, F.; Modarres, R. & Dehghan, Z. 2016b. Lake urmia water-level change detection and modeling. Modeling Earth Systems and Environment. 2(4): 1-16. (In Persian)
Fathian, F.; Morid, S. & Arshad, S. 2013. Trend assessment of land use changes using remote sensing technique and its relationship with streamflows trend (case study: the east sub-basins of Lake urmia).(In Persian)
Fathian, F.; Morid, S. & Kahya, E. 2015. Identification of trends in hydrological and climatic variables in Lake urmia basin, Iran. Theoretical and Applied Climatology. 119(3): 443-464. (In Persian)
Forman, R.T. 1995. Some general principles of landscape and regional ecology. Landscape ecology.10(3): 133-142.
Forman, R.T.T. 1996. Land mosaicsThe ecology of landscapes and regions-, Cambridge Univ. Pres, Cambridge.
Galbraith, D.; Levy, P.E.; Sitch, S.; Huntingford, C.; Cox, P.; Williams, M. & Meir, P. 2010. Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change. New Phytologist. 187(3): 647-665.
Galic, N.; Schmolke, A.; Forbes, V.; Baveco, H. & van den Brink, P.J. 2012. The role of ecological models in linking ecological risk assessment to ecosystem services in agroecosystems. Science of the Total Environment. 415: 93-100.
Ghorbanalizadeh, A.; Akhani, H. & Bergmeier, E. 2020. Vegetation patterns of a rapidly drying up salt lake ecosystem: Lake Urmia, NW Iran. Phytocoenologia. 1-46. (In Persian)
Hanewinkel, M.; Cullmann, D.A.; Schelhaas, M.J.; Nabuurs, G.J. & Zimmermann, N.E. 2013. Climate change may cause severe loss in the economic value of European forest land. Nature climate change, 3(3): 203-207.
Kang, P.; Chen, W.; Hou, Y. & Li, Y. 2018 Linking ecosystem services and ecosystem health to ecological risk assessment: A case study of the Beijing-Tianjin-Hebei urban agglomeration. Science of the Total Environment. 636:1442-1454.
Kendall, M.G. 1948. Rank correlation methods.
Khazaei, B.; Khatami, S.; Alemohammad, S.H.; Rashidi, L.; Wu, C.; Madani, K.;Kalantari, Z.; Destouni, G. & Aghakouchak, A. 2019. Climatic or regionally induced by humans? Tracing hydro-climatic and land-use changes to better understand the Lake Urmia tragedy. Journal of hydrology. 569: 203-217.
Levin, P.S.; Kelble, C.R.; Shuford, R.L.; Ainsworth, C.; deReynier, Y.; Dunsmore, R.; Fogarty, M.J.; Holsman, K.; Howell, E.A.; Monaco, M.E. & Oakes, S.A. 2014. Guidance for implementation of integrated ecosystem assessments: a US perspective. ICES Journal of Marine Science.71(5): 1198-1204.
Mann, H. B. 1945. Nonparametric tests against trend. Econometrica: Journal of the econometric society.245-259.
McFeeters, S. K. 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International journal of remote sensing. 17(7): 1425-1432.
McFeeters, S.K. 2013. Using the normalized difference water index (NDWI) within a geographic information system to detect swimming pools for mosquito abatement: a practical approach. Remote Sensing. 5(7): 3544-3561.
McGarigal, K. & Marks, B.J. 1995. Spatial pattern analysis program for quantifying landscape structure. Gen. Tech. Rep. PNW-GTR-351. US Department of Agriculture, Forest Service, Pacific Northwest Research Station.1-122.
Mirsanjari, M.M.; Zarandian, A.; Mohammadyari, F. & Visockiene, J. S. 2020. Investigation of the impacts of urban vegetation loss on the ecosystem service of air pollution mitigation in Karaj metropolis, Iran. Environmental Monitoring and Assessment. 192(8): 1-23. (In Persian)
Mohammadzade, S., Sedighi, H., Pezeshkir Rad, G., Makhdom, M., & Sharifi Kia, M. 2014. Analyzing the impacts of changing agronomic land use to orchard from the viewpoint of orchardist in the west of Lake urmia basin. Iranian Journal of Agricultural Economics and Development Research. 45(4): 775-785. (In Persian)
Mulligan, M. 2013. WaterWorld: a self-parameterising, physically based model for application in data-poor but problem-rich environments globally. Hydrology Research. 44(5): 748-769.
Mulligan, M. 2016. Computational Policy Support Systems for Understanding Land Degradation Effects on Water and Food Security for and from Africa. In Land Restoration (pp. 211-233). Academic Press.
Munns Jr, W.R.; Rea, A.W.; Suter, G.W.; Martin, L.; Blake‐Hedges, L.; Crk, T.; Davis, C.; Ferreira, G.; Jordan, S.;Mahoney, M. & Barron, M.G. 2016. Ecosystem services as assessment endpoints for ecological risk assessment. Integrated environmental assessment and management. 12(3):522-528.
Nematollahi, S.; Fakheran, S.; Kienast, F. & Jafari, A. 2020. Application of InVEST habitat quality module in spatially vulnerability assessment of natural habitats (case study: Chaharmahal and Bakhtiari province, Iran). Environmental Monitoring and Assessment.192(8): 1-17.
Null, S.E.; Viers, J.H. & Mount, J.F. 2010. Hydrologic response and watershed sensitivity to climate warming in California's Sierra Nevada. PLoS One. 5(4): e9932.
Pandeya, B. 2013. Understanding hydrological ecosystem services produced by the Indo-Gangetic basin and selected mountain watersheds in the Himalayas (Doctoral dissertation, King's College, London).
Patil, G.P.; Brooks, R.P.; Myers, W.L.; Rapport, D.J. & Taillie, C. 2001. Ecosystem health and its measurement at landscape scale: Toward the next generation of quantitative assessments. Ecosystem Health. 7(4): 307-316.
Peh, K.S.H.; Thapa, I.; Basnyat, M.; Balmford, A.; Bhattarai, G.P.; Bradbury, R.B.; Brown, C.; Butchart, S.H.; Dhakal, M.; Gurung, H. & Hughes, F.M. 2016. Synergies between biodiversity conservation and ecosystem service provision: Lessons on integrated ecosystem service valuation from a Himalayan protected area, Nepal. Ecosystem Services. 22: 359-369.
Pettorelli, N.; Ryan, S.; Mueller, T.; Bunnefeld, N.; Jędrzejewska, B.; Lima, M. & Kausrud, K. 2011. The Normalized Difference Vegetation Index (NDVI): unforeseen successes in animal ecology. Climate research, 46(1): 15-27.
Reidsma, P.; König, H.; Feng, S.; Bezlepkina, I.; Nesheim, I.; Bonin, M.; Sghaier, M.; Purushothaman, S.; Sieber, S.; Van Ittersum, M.K. & Brouwer, F. 2011. Methods and tools for integrated assessment of land use policies on sustainable development in developing countries. Land Use Policy. 28(3): 604-617.
Riordan, E.C. & Rundel, P.W. 2014. Land use compounds habitat losses under projected climate change in a threatened California ecosystem. PloS one. 9(1): e86487.
Sadat, M.; Zoghi, M. & Malekmohammadi, B. 2020. Spatiotemporal modeling of urban land cover changes and carbon storage ecosystem services: case study in Qaem Shahr County, Iran. Environment, Development and Sustainability. 22(8): 8135-8158. (In Persian)
Seppelt, R.; Fath, B.; Burkhard, B.; Fisher, J.L.; Grêt-Regamey, A.; Lautenbach, S.; Pert, P.; Hotes, S.; Spangenberg, J.; Verburg, P.H.& Van Oudenhoven, A.P. 2012. Form follows function? Proposing a blueprint for ecosystem service assessments based on reviews and case studies. Ecological Indicators. 21:145-154.
Shadkam, S.; Ludwig, F.; Van Oel, P.; Kirmit, Ç. & Kabat, P. 2016. Impacts of climate change and water resources development on the declining inflow into Iran's Lake urmia. Journal of Great Lakes Research. 42(5): 942-952.
Sobhani, B.; Zengir, V.S. & Kianian, M.K. 2019. Drought monitoring in the Lake Urmia basin in Iran. Arabian Journal of Geosciences.12(15): 1-15. (In Persian)
Song, X. P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F. & Townshend, J.R. 2018. Global land change from 1982 to 2016. Nature. 560(7720): 639-643.
Nazeri Tahroudi, M.; Ramezani, Y. & Ahmadi, F. 2019. Investigating the trend and time of precipitation and river flow rate changes in Lake Urmia basin, Iran. Arabian Journal of Geosciences. 12(6): 1-13. (In Persian)
Talebi, T.; Ramezani, E.; Djamali, M.; Alizadeh Ketak Lahijani, H.; Naqinezhad, A.; Alizadeh, K. & Andrieu-Ponel, V. 2016. The Late-Holocene climate change, vegetation dynamics, lake-level changes and anthropogenic impacts in the Lake Urmia region, NW Iran. Quaternary International. 408: 40-51. (In Persian)
Thiessen, A. H. 1911. Precipitation averages for large areas. Monthly weather review. 39(7): 1082-1089.
Thornes, J.B. 1990. The interaction of erosional and vegetational dynamics in land degradation: spatial outcomes. Vegetation and erosion. 41-53.
Van Soesbergen, A. 2013. Impacts of climate change on water resources of global dams (Doctoral dissertation, King's College London (University of London)).
Van Soesbergen, A.J.J. & Mulligan, M. 2014. Modelling multiple threats to water security in the Peruvian Amazon using the WaterWorld policy support system. Earth System Dynamics. 5(1): 55-65.
Velasco Arguello, P.D.R. 2014. Hydrologic responses to climatic change in Paute River Basin in Ecuador: A case study comparing SWAT (Solid and Water Assessment Tool) and WaterWorld (Master's thesis, Londres/King's College University of London/2014).
Xing, L.; Hu, M. & Wang, Y. 2020. Integrating ecosystem services value and uncertainty into regional ecological risk assessment: A case study of Hubei Province, Central China. Science of the Total Environment. 740: 140126.
Yan, G. 2003. Pixel based and object oriented image analysis for coal fire research. ITC.
Zarandian, A.; Badamfirouz, J.; Musazadeh, R.; Rahmati, A. & Azimi, S.B. 2018. Scenario modeling for spatial-temporal change detection of carbon storage and sequestration in a forested landscape in Northern Iran. Environmental monitoring and assessment. 190(8): 1-19. (In Persian)
Zarandian, A.; Baral, H.; Stork, N.E.; Ling, M.A.; Yavari, A.R.; Jafari, H.R. & Amirnejad, H. 2017. Modeling of ecosystem services informs spatial planning in lands adjacent to the Sarvelat and Javaherdasht protected area in northern Iran. Land Use Policy. 61: 487-500. (In Persian)
Zarandian, A.; Yavari, A.R.; Jafari, H.R. & Amirnejad, H. 2016. Modeling Land Use Change Impacts on Water-Related Ecosystem Services Using a Policy Support System. Environmental Sciences. 13(4): 97-112. (In Persian)